BASICS OF DIFFUSION MRI

- DWI is a fast sequence, Consuming not more than 2 m.
- it is a sequence of great value, in few time
 - Diffusion : 2 Types Isotropic = Free
 - Non isotropic = inbetween cells
 - What is the appearance of lesions in DW MRI?
 - Either *Restricted* or *Free* Diffusion.
 - • Free → Rapid Motility Molecules → Low signal.
 - Restricted → low motility → High signal.

Sequences & parameters in Diffusion are the same in T2

But The Gradient added in Diffusion

• → inversion of T2 effect on fluidsi.e.

physiological fluids in Diffusion appears of low signal "Black".

- CSF = Free Diffusion
- Bright lesion = Restricted Diffusion

* What are the pathological principles of DWI?

- •Fluid Molecules diffuse in between Cells
- •Thus, increase in Cells
- Size Number Viscosity of intercellular Fluid

→ DECREASE "Restrict " Diffusion

What are the main 3 states of Restricted Diffusion?

- Increase Cell Size → as in *Cerebral Infarction*
- Increase Cell Number → as in *Tumors*
- Increase Viscosity of intercellular Fluid → As in *Brain Abscess*

Cerebral Infarction

In cerebral infarction

•Cut off blood supply \square disturbance of salts exchange \rightarrow Na in ward

→Cells swollen i.e. "cytotoxic edema "

•Swelling of the cells = increase its size → Diffusion Restriction

.DWI is the Fastest method to diagnose Cerebral Infarction

1st 3 Hours are the golden time for Thrombolytic therapy

- DWI can diagnose infarction in **hyper acute** stage
- This early state not diagnosed by CT or may Not by MRI

BUT DWI can diagnose in WITH IN MINUTES of occurrence !!!

Infarction Stage	Duration
Hyper-acute	< 6 H
Acute	6 h : 3 Days
Sub-acute	3 days : 3 weeks
Chronic	>3 weeks

⇒ ADC MAP

ADC = Apparent Diffusion Coefficient

•it represent the rate of an anisotropic diffusion.

What is b Factor?

- = Degree of diffusion "mm2/sec"
- it depend on :
- Gradient amplitude
- Time
- intervals in-between

...... More of Diffusion

- ADC Map is a computerized image.
- Obtained by taking multiple Diffusion images on different b Factors.
- This series of images make the rate of diffusion of different molecules can be calculated in numbers.
- The ADC Map image *is inverted* in colors i.e. <u>restricted is black</u> & <u>Free is</u> <u>White</u>

Normal neonatal brain. normal to have low DW signal intensities in the frontal deep white matter (arrows.)

- •The appearance of the pediatric brain on DW images varies with age
- •b ADC values of the corresponding areas are high in neonatal brain:

= To interpret ADC Image :

- Look at: Diffusion Image & ADC Map
- Area of Restricted Diffusion: -High signal in DWI & Low in ADC Vice versa

Thus

As regarding DWI Restricted Diffusion & lesions of very high signal in T2 -> appears Bright

! How to Differentiate?

- Area of Restriction Bright in DWI Dark in ADC
- Very Hi T2 lesion Bright in DWI Bright in ADC

⇒ Value of Diffusion in ADC Map is represented by ADC Value.

ADC Value & Tumors

- Malignant Vs Benign
- •Low grade Vs High Grade
- → Higher Cell number → More Restricted Diffusion → Less ADC Value

⇒ ADC Value & Tumor Cellularity?

- **⇒** Tumors of High Cellularity :
- ⇒ Lymphoma ADC Value 0.51 : 0.71
- ⇒ High grade Glioma 0.58 : 0.88

- **⇒** Tumors of Low Cellularity:
- ⇒ Low grade Glioma ADC Value > 1.05

⇒ All Malignancy has High Cellularity ? ?

- ⇒ Usually Yes
- But Few Malignancies has Low Cellularity .
- Best Example → CHORDOMA
- Chordoma has <u>low celularity</u> → <u>High ADC value</u>

Epidermoid Cysts

Benign & non-neoplastic, Congenital or Acquired cysts.

- Contain dense fluid + epidermal elements → restricted diffusion.
- **DWI differentiate** it from other cysts, especially :
- arachnoid cyst, → do not show any restricted diffusion. "CSF LIKE"

Meningiomas

Extra-axial Dural Neoplasm

- Homogenous intense enhancing +/- Dural tail.
- Their typical appear \rightarrow easier to be diagnosed on routine MR images.
- Subtypes: * Typical, * Atypical * Malignant
- A typical and malignant meningiomas show much more prominent restricted diffusion.

Meningioma. Post-contrast T1-weighted image (A) shows intense enhancement of

.(the tumor (arrow

On ADC map, the mass is dark, due to the restricted diffusion. Pathology: Atipic

.meningioma, WHO grade 2

Chordomas

Chordomas Vs chondro-sarcomas

- Rare
- Primary bone tumors
- •it Involves:
 - skull base, especially the clivus.
 - sacrococcigeal region.
- DWI:
- Especially poorly differentiated chordomas → more restricted diffusion than chondrosarcomas

Lymphomas

• Lymphoma Vs Glial Tumors.

- •Site: periventricular/sub ependymal.
- •Intense Homogenous enhancement.
- •Their diffusion is more restricted compared to glial tumors
 - Also, they show lower perfusion than glial tumors.

Abscess .

- •Sometimes can be mistaken as necrotic tumors on imaging,
- •Both show peripheral contrast enhancement.
- •Clinical presentation is important for the differential diagnosis.
- •On MRI, liquid content of the abscesss how markedly restricted diffusion, \rightarrow extremely helpful for the diagnosis.

- Diffusion-weighted MRI (DWI) has been applied to extracranial sites since the 1990s.
- Several investigators have reported that 3-T DWI can improve :
- the diagnostic accuracy of tumor detection,
- staging,
- targeted biopsy,
- posttreatment follow-up,
- Assessment of therapeutic response

Assessment of Hepatic Tumors

- Assessment of body lymphoma
- •Evaluation of Prostate Cancer

SUMMARY

☐ DWI is a fast sequence * Gradient its magic	
ink	
☐ DWI is the best to assess hyper acuteinfarction	
\square Restricted diffusion = high signal in DWI / Low in ADCvice versa	
☐ Increase in "cells size/Infarction- " Numbers / Tumors " — "Fluid Viscosity / Cyto-toxic edema"	
• ADC Map give a numerical values as in CT Hu.	
☐ Highest ADC value of freeDiffusion is 3	
• ADC value of :	
- high grade Tumors < 1, Low grade >1	
• DWI is an important part of MR imaging for the evaluation of brain masses.	
• DWI can not be used alone.	
• Data obtained from routine T1, T2 and FLAIR sequences as well as post	

- contrast images should be evaluated altogether.
 Perfusion imaging → evaluate vascularity of masses.
- 8 8